समीकरण $x^{2}+|2 x-3|-4=0$, के मूलों का योगफल है
$2$
$-2$
$\sqrt 2$
$-\sqrt 2$
मान लीजिए कि $m , n$ धनात्मक पूर्णांक $(positive\,integers)$ इस प्रकार है कि $6^m+2^{m+n} 3^m+2^n=332 . m^2+m n+n^2$ व्यंजक $(expression)$, का मान क्या होगा ?
माना द्विघात समीकरण $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$
माना $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $ तो $y$ के वास्तविक मानों के लिये $x$ है
समीकरण ${e^x} - x - 1 = 0$ के होंगे